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Box - Jenkins Approach

I Assume that the observed time series (data) {zt} is a
realization of a discrete time stochastic process

I The sequence of errors {Zt} is not iid, but stationary.

I Then apply the results from the theory of stationary
stochastic process to analyze the model.

I Examine the dependence structure and identify an appropriate
model

I Estimate the parameters of the model and check for adequacy

I Use for forecasting if it is found good for the data.
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Characteristics of a Time Series

Mean function, m(t) = E(Zt)
Variance function, V (t) = E(Zt −m(t))2

Covariance function, γt,s = Cov(Zt, Zs) = E(Zt−m(t))(Zs−m(s))
Correlation function, ρt,s =

γt,s√
V (t)V (s)

.

Autocovariance of order k for the series {Zt} is
γk = Cov(Zt, Zt−k) = E(Zt − m(t))(Zt−k − m(t − k)) and the
autocorrelation function, ACF of order k
ρk = γk√

V (t)V (t−k)
.

PACF = Corr(Zt, Zt−k), by fixing the effect of Zt−1, Zt−2, ..., Zt−k+1
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Stationary Time series

A Stochastic process {Zt} is

I strictly stationary if the joint distribution of (Zt1 , Zt2 , ..., Ztn)
and (Zt1+h, Zt2+h, ..., Ztn+h) remain same for every
t1, t2, ..., tn and h in the parameter(time) space T .

I weakly stationary if E(Zt) = m, a constant, V ar(Zt) = σ2,
finite and the Cov(Zt, Zs) is a function of |s− t| only.

I A sequence of uncorrelated rvs {at} with mean zero and
constant variance is referred to as a white noise.
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Correlogram

I The SACF is taken as an estimate of the ACF

I Plot of SACF as a function of lag is the correlogram

I Used for identifying the dependence structure

I For a stationary time series, SACF either geometrically
decreases or oscillates between negative and positive values in
a geometrically decreasing envelope

I Helps identifying the order of dependence

I Similarly sample PACF also useful to analyze the dependence
structure
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ARMA(p,q) Model

I Zt − φ1Zt−1 − φ2Zt−2 − ...− φpZt−p
= at − θ1at−1 − θ2at−2 − ...− θqat−q

I The model is stationary if AR component is stationary and
invertible if its MA component is so

I More detailed analysis may be carried out for specified values
of p and q
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Autoregressive Integrated Moving Average (ARIMA)
Models - Non-seasonal case

I Given time series {Zt} is not stationary

I It becomes stationary ARMA process after a finite number
(d) of differences

I Notation: Zt−1 = BZt,, B is the back shift operator
Zt − Zt−1 = Zt −BZt = (1−B)Zt = ∇Zt,
∇ = 1−B is the difference operator, ∇2Zt = ∇(∇Zt)

I If d = 1 then Zt − Zt−1 = ∇Zt becomes stationary ARMA

I {Zt} is an ARIMA(p, d, q) process if {∇dZt} is a stationary
ARMA(p, q) process
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Test for Stationarity

The stationarity of a given time series may be examined by plotting
the graphs of

I The series as a function of time

I Sample autocorrelation function
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Introduction to Financial time series

I Let {Pt = S(lt)} be the price of an asset at time lt,
t = 1, 2, ..., where l is the interval between the observations.
Then the sequence of return is defined by
Yt = ln(Pt/Pt−1), t = 1, 2, ....

I At any given point of time, t, Yt is a random variable and
hence we have a time series {Yt, t > 0} of returns.
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Example: S&P500 price index series

I The data is the daily closing values of the S&P500 index on
trading days from 4th April 2010 to 4th October 2013

I Following are the relevant plots of the time series

I Price series

I Log returns and squared log returns

I Autocorrelation function (ACF) of the returns and squared
returns
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Descriptive statistics of S&P500 log return series

yt = Log return series

I Mean (yt) = 0.00042345

I Variance (yt) = 0.00011913

I Standard deviaion =0.0109

I Min = -0.0690, Max=0.0463

I Kurtosis = 7.1840

I Excess kurtosis =4.1840
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Special Features of Financial Time Series

Empirical studies on financial time series show that {Yt, t > 0} is
characterized by

I Absence of autocorrelation (serial correlation)

I Squared returns exhibit significant serial correlation

I The marginal variables follow heavy-tailed distribution,
kurtosis > 3

I Conditional variance of Yt given the past observations is not
constant,(heteroskedasticity)

I Evidence of volatility clustering: ie, Low values of volatility
followed by low values and high values of volatility followed by
high values.
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I The linear time series models available in the literature such
as ARIMA/ARMA are not suitable to model the financial time
series with the above features. So new classes of models are
introduced to deal with such time series.

I Before trying such models for a given financial data we need
to check if it possesses some of the above properties.

I Some of the properties can be visualized through graphical
methods.

I An authentic statement requires a statitical test
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Autoregressive Conditional Heteroscedastic (ARCH) model

I Engle (1982) introduced ARCH models to capture volatility
clustering in time series data.

I An ARCH(p) model assumes that
Yt − µt(yt−1, yt−2, ...) = σtεt, with σ2t = ω +

∑p
i=1 αiY

2
t−i,

where µt(yt−1, yt−2, ...) = E(Yt|yt−1, yt−2, ...), and {εt} is a
sequence of independent and identically distributed (iid)
random variables with mean zero and variance 1, ω > 0, and
αi ≥ 0 for i > 0, α1 + α2 + ...+ αp < 1.

I The conditional mean µt(yt−1, yt−2, ...) can be estimated by
Box-Jenkin’s method.

I Our focus is to model the conditional variance, σ2t . So we set
µt(yt−1, yt−2, ...) = 0.
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I The ARCH(1) model is defined by

Yt = σtεt , σ2t = ω + α1Y
2
t−1 (1)

where ω > 0 and 0 ≤ α1 < 1.

I The properties of the model are
1. The unconditional mean of Yt is zero, since

E (Yt) = E (E (Yt|Yt−1)) = E (σtE (εt)) = 0
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2. The conditional variance of Yt is

E
(
Y 2
t |Yt−1

)
= ω + α1Y

2
t−1 = σ2t

3. The unconditional variance of Yt is

V ar (Yt) =
ω

1− α1
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4. Assuming that the fourth moment of Yt are finite, the Kurtosis
KY of Yt, is given by

KY =
E
(
Y 4
t

)
E
(
Y 2
t

)2 = 3
1− α2

1

1− 3α2
1

> 3

provided α2 < 1/3.

5. The autocorrelation function (ACF) of Yt is zero. The ACF of{
Y 2
t

}
is ρY 2

t
(k) = αk1 and notice that ρY 2

t
(k) ≥ 0 for all k, a

result which is common to all linear ARCH models.
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Properties of ARCH(p) models

I Representation of ARCH in the form of an AR model helps in
utilizing the established properties the latter to analyze the
former.

I An ARCH(p) model may be expressed as an AR(p) in Y 2
t :

Y 2
t = ω + α1Y

2
t−1 + α2Y

2
t−2 + ...+ αpY

2
t−p + ut

I From this we have
E(Yt) = 0, V ar(Yt|yt−1, yt−2, ...) = σ2t
V ar(Yt) = ω

1−α1−α2−...−αp
I ACF of {Yt} vanishes.

I ACF of {Y 2
t } can be obtained by solving the Yule-Walker’s

equations in terms of the AR coefficients.
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GARCH Models

I GARCH model is an extension of ARCH by Bollerslev (1986).

I The model allows the conditional variance to depend on the
past conditional variance and the squares of past returns.

I The GARCH (p, q) is defined by

Yt = σtεt , σ2t = ω +

p∑
i=1

αiY
2
t−i +

q∑
j=1

βjσ
2
t−j

where {εt} is a sequence of iid random variables with mean 0
and variance 1,
ω > 0, αi ≥ 0, βj ≥ 0, and

∑max(p,q)
i=1 (αi + βi) < 1.
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GARCH(1,1)

I Yt = σtεt , σ2t = ω + α1Y
2
t−1 + β1σ

2
t−1

where 0 ≤ α1, β1 ≤ 1, α1 + β1 < 1.

I Literature on financial time series analysis stress that a
GARCH(1, 1) model with only three parameters in the
conditional variance equation is adequate to obtain a good
model fit.

I So for all practical purposes, GARCH(1,1) model is good
enough, see Hansen and Lunde (2004).
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Properties of the GARCH(1,1) model are

I The unconditional mean of Yt is zero, since

E (Yt) = E (E (Yt|Yt−1)) = E (σtE (εt)) = 0

I The conditional variance of Yt is

E
(
Y 2
t |Yt−1

)
= ω + α1Y

2
t−1 + β1σ

2
t−1 = σ2t

I The unconditional variance of Yt is

V ar (Yt) =
ω

1− (α1 + β1)
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I The Kurtosis of Yt, KY , is given by

KY =
3
[
1− (α1 + β1)

2
]

1− (α1 + β1)
2 − 2α2

1

> 3

Consequently, similar to ARCH models, the tail distribution of
GARCH(1,1) process is heavier than that of a normal
distribution if 1− 2α2

1 − (α1 + β1)
2 > 0.

I The ACF of {Yt} is zero and the ACF of
{
Y 2
t

}
is given by

ρY 2
t

(k) = (α1 + β1)
k−1 α1

(
1− α1β1 − β21

)
1− 2α1β1 − β21

k = 1, 2, ...
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ML Estimation for GARCH Model

I If the errors are standard normal, then the likelihood function
of an GARCH(p, q) model is

L(θ|y1, y2, ..., yn) =

n∏
t=p+1

1√
2π σ2t

exp

(
− y2t

2σ2t

)
f(y1, y2, ..., yp|θ)

(2)
where θ = (ω, α1, ..., αp, β1, β2, ..., βq)

′

I f(y1, y2, ..., yp|θ) is the joint probability density function of
y1, y2, ..., yp.
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I The conditional-likelihood function becomes

L(θ; yp+1, yp+2, ..., yn|y1, y2, ..., yp) =

n∏
t=p+1

1√
2π σ2t

exp

(
− y2t

2σ2t

)
.

(3)
I The conditional log-likelihood function is

l(θ; yp+1, yp+2, ., yn|y1, y2, ., yp) =

n∑
t=p+1

(−1

2
ln(2π)−1

2
ln(σ2

t )− y2t
2σ2

t

).

(4)

Maximizing the log-likelihood function with respect to the
parameters we get the MLEs.

I Errors may also be assumed to follow other symmetric
distributions such as Laplace, student-t, GED, etc.



Statistical Modelling of Volatility in Financial Time Series

Drawbacks of GRACH models

I The GARCH models are unable to represent volatility
asymmetry.

I Due to the presence of lagged Y 2
t in the variance equation,

the positive and negative values of the lagged innovations
have the same effect on the conditional variance.

I In the finance literature, however, it has been recognized that
volatility often responds to positive and negative shocks in
different ways.

I For example, the volatility of stock returns tends to increase
(decrease) when there is “bad news” (“good news”).

I To ensure positiveness of ht in the GARCH model,
non-negative constraints are imposed on the coefficients in the
variance equation.
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Modified versions of GARCH models

Several generalizations of GARCH models are available in the liter-
ature. One may find the details in the following references

I Tsay, R.S. (2005). Analysis of Financial time Series, 2nd
Edition. John Wiley & Sons

I Anderson, T.G., Davis, R. A., Kreiss, J-P and Mikosch, T.
(2009). Hand Book of Financial Time Series. Springer-Verlag,
Berlin. (Edited Volume)
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Parameter Driven Models

The parameter driven models assume that the volatilities are gen-
erated by some latent models, in terms of unobservable variables.
The log-normal stochastic volatility (SV) model by Taylor (1986) is
the simplest and the best known example:

Yt|ht ∼ N (0, exp (ht)) , ht = α+ βht−1 + ηt

where ht represents the log-volatility, which is unobserved but can
be estimated using the observations. Several parametrization of this
model are available in the literature.
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Stochastic Volatility Models (SVM)

I The parameter driven model, may be assumed to have a
structure, where the returns Yt are generated by the model of
the form:

Yt = εt
√
Xt

with
Xt = eht , ht = α0 + α1ht−1 + ηt,

where {εt} is iid symmetric with D(0,1),
{ηt} is iid independent of {εt}.
{Yt} so defined possesses the special features of a financial
time series and is referred to as Stochastic Volatility Model
(SVM).
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Normal-lognormal SVM

I This one of the widely studied SVM, where

Yt = βεt exp (ht/2) , ht = µ+ φ(ht−1 − µ) + ηt, (5)

where β = eµ/2, εt and ηt are two independent Gaussian
white noises, with variances 1 and σ2η, respectively.

I Due to the Gaussianity of ηt, this model is called a log-normal
SV model.
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Second order propoerties

I As ηt is Gaussian, {ht} is a standard Gaussian AR(1) process,
it will be (strictly and covariance) stationary if |φ| < 1 with:

µh = E (ht) = µ, σ2h = V ar (ht) =
σ2η

1− φ2

I As {εt} is always stationary, {Yt} will be stationary if and only
if {ht} is stationary, Yt being the product of two stationary
process.

I The odd moments of Yt of all order vanish. Using the
properties of lognormal distribution, if r is even, all the
moments exist if ht is stationary and are given by

E(Y r
t ) = E(εrt )E

(
exp(

r

2
ht)
)

=
r!e

rµ
2

2
r
2 ( r2)!

exp
(r

2
µh +

r2σ2h
8

)



Statistical Modelling of Volatility in Financial Time Series

I Hence the kurtosis is

E
(
Y 4
t

)
E
(
Y 2
t

)2 = 3 exp
(
σ2h
)
≥ 3

which shows that the SV model has fatter tails than the
corresponding normal distribution.

I The ACF of {Y 2
t } is

ρY 2
t

(k) =
Cov

(
Y 2
t , Y

2
t−k
)

V ar
(
Y 2
t

) =
exp

(
σ2hφ

k
)
− 1

3 exp
(
σ2h
)
− 1

'
exp

(
σ2h
)
− 1

3 exp
(
σ2h
)
− 1

φk.
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Some Observations

I The dependence structure of {Yt} is decided by that of {ht}
I If φ < 0, ρY 2

t
(k) can be negative, unlike ARCH models.

I There is no need for non-negativity constraints or for bounded
kurtosis constraints on the coefficients.

I This is an advantage over ARCH/GARCH models

I The problem of estimation is more complicated in SVM
compared to that in ARCH/GARCH models.

I Likelihood based inference works well in ARCH/GARCH set
up, but not in SVM as we see next.
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Estimation

I A major problem here is to estimate θ = (µ, φ, σ2η).
I The likelihood function of θ based on y = (y1, y2, ..., yT ) is

the pdf of y given θ.
I But, from the model structure, it is clear that the likelihood

function will depend on the unknown vector
h = (h1, h2, ..., hT ).

I We may get an explicite form of the likelihood function by
integrating out the latent variables. Thus

L(θ) = f(y|θ)

=

∫
f(y,h|θ)dh

=

∫
hT

∫
hT−1

. . .

∫
h1

f(y1, y2, ..., yT , h1, h2, ..., hT |θ)dh1dh2...dhT

=

∫
f(y|h)f(h|θ)dh



Statistical Modelling of Volatility in Financial Time Series

I The multiple integral L(θ) cannot be factored in to a product
of T one-dimensional integrals due to the dependence of ht on
the past.

I The difficulties in obtaining explicit forms of MLEs, lead to
several numerical methods.

I Markov Chain Monte Carlo (MCMC) is commonly used
method for numerical estimation.

I Several algorithms for this method are also available in the
literature.

I Bayesian analysis of the lognormal SV model is studied by
Jacquier, Polson and Rossi (1994) (JPR)

I Generalized Method of Moments (GMM) is applied whenever
the moments of several order have analytical expressions.
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Remark:

I The structure of an SVM allows us to interpret it as specifying
prior over the sequence of {ht}.

I The prior is that the volatilities evolve according to an AR(1)
process.

I Note that the likelihood function L(θ) =
∫
f(y|h)f(h|θ)dh

may be treated as the Expectation of f(y|h) with respect to
the prior distribution of h|θ.

I Recall that an integral can be approximated by a sum over a
proper partition of the range of the integral.

I This motivates us to approximate the likelihood function of
SVM by an appropriate sum and then maximize by numerical
methods.
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I The SV model described above insists that the log-volatility
should have normal distribution, but need not be true in
reality.

I Abraham, Balakrishna and Sivakumar (2006) studied an SV
model Yt = εt

√
Xt where {Xt} is a stationary gamma

sequence defined by first order gamma AR (GAR(1)).
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Gamma SV model

I Let Yt be the return on an asset at time t, t = ±1,±2, ....
Define

Yt = εt
√
Xt, (6)

I We discuss the properties of {Yt} when {Xt} is a Markov
sequence with stationary gamma marginal density function:

f(x; λ, p) =
e−λxxp−1λp

Γ(p)
, x ≥ 0, λ > 0, p > 0
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I If we assume a G (λ, p) distribution for Xt in (13) then the
characteristic function (cf) of Yt is given by

φ(s) = E
[
eisYt

]
=

(
2λ

2λ+ s2

)p
. (7)

This is the cf of the difference of two iid gamma r.v.’s with
parameters

√
2λ and p.

I The distribution of such r.v.’s are referred to as generalized
Laplace distributions.

I At p = 1, the density corresponding to (14) becomes

f1(y) =

√
λ

2
exp

{
− |y |

√
2λ
}
, −∞ < y <∞, λ > 0,

which is the Laplace pdf .
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I The odd moments of Yt are zero and its even moments are
given by

E
[
Y 2r
t

]
= (2r−1)(2r−3) · · ·3 ·1 · Γ(p+ r)

Γ(p)
λ−r, r = 1, 2, ... .

I The kurtosis of yt becomes

γ =
E(Y 4

t )− [E(Yt)]
4

[var(Yt)]
2 = 3 +

3

p
> 3.

I Note that if p = 1, then γ = 6 which is the kurtosis of a
Laplace distribution and as p→∞, γ → 3, the one
corresponding to a normal distribution.
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Advantages of Gamma SV

I By choosing smaller p, one can get a distribution with larger
kurtosis. So Yt has a leptokurtic marginal distribution.

I The literature on financial time series indicates that the return
series always shows the tendency to follow leptokurtic
distributions.

I Hence the generalized Laplace distribution is a good candidate
for modeling such data.

I To generate such sequences, we need models to generate the
dependent sequences of gamma rvs.
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GAR(1) Model

I GAR(1) , Gaver and Lewis (1980)

Xt = ρXt−1 + ηt, 0 ≤ ρ < 1, t = 1, 2, ...,

where ηt =
∑N

j=1 ρ
UjEj , Ej ∼ exp(λ) and Uj ∼ U(0, 1).

N is Poisson with mean p log (1/ρ).

I The r.v’s Uj , Ej and N are mutually independent for every j.
If N ≡ 0 then we take ηj ≡ 0.

I Then, {Xt} defined above is stationary and has G (λ, p) as
the marginal distribution.
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2. Parameter Estimation

I The likelihood function involves the unobservable Markov
dependent latent variables.

I These variables have to be integrated out using multiple
integrals and this complicates the parameter estimation by the
method of maximum likelihood.

I Moreover, in the present case, the probability density function
of ηt in expression (11) does not have a closed form.

I In view of this
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I The model parameters are estimated using the method of
moments.

I The resulting estimators perform well for larger sample sizes,
confirmed by simulation. Theoretically suported by the
generalized method of moments introduced by Hansen (1982).

I The Gamma SV model is applied to analyze the stock price
index returns of Canada (TSE300), Japan (TOPIX), the UK
(FTSE100) and the USA (S&P500).

I It is observed that Gamma Stochastic Volatility model
captures the kurtosis of the marginal distribution better than
other stndard models.

I See the following Table. Details in Abraham, Balakrishna and
Sivakumar (2006).
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Gamma SV Model for stock price index

 1

 

Kurtosis of stock returns and the estimated models 

 Data GARCH(1,1) Gamma SV 

                            

Canada       

Germany 

       Japan                       

 U.S. 

 

7.4606 

5.1075 

5.1656 

5.7057 

 

   5.4639 

   5.8098 

   4.9674 

   4.4596 

 

7.3789 

5.0382 

5.1481 

5.6650 
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Some Recent Work
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Gumbel Extreme Value SV Model

Model and Properties

I Let {yt} be a sequence of returns on certain financial asset
and the volatilities are generated by a Markov sequence
{exp(ht)} of non-negative rvs. Define the SV model

yt = exp (ht/2) εt (8)

ht = αht−1 + ηt, t = 1, 2, ..., 0 < α < 1 (9)

where {εt} is a sequence of independent and identically
distributed (iid) standard normal random variables (rvs).
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I The sequence {εt} is independent of ht and ηt for every t.

I Here we assume that for every t, the volatility, ht is a GEV rv
with probability density function (pdf)

fht(x; µ, σ) =
1

σ
Exp

(
x− µ
σ

)
Exp

(
−Exp

(
x− µ
σ

))
,

(10)
−∞ < x <∞, −∞ < µ <∞, σ > 0.

I If {ht} follows an Extreme value distribution, then exp(ht)
follows a Weibull distribution.
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I In order to have this marginal distribution for {ht} defined by
(9) we need to have the distribution of ηt expressed by

ηt
L
= (1− α)µ− σ Z, and Z

L
= − log

(
U−α

)
(11)

where L denotes the equality in distribution, U denotes a
positive stable rv with Laplace transform
ϕ(s) = e−s

α
, 0 < α < 1.

I The mean and variance of {ηt} are respectively given by

E(ηt) = (1−α) (µ−σ γ) = µ∗; V (ηt) = (1−α2)
π2σ2

6
= σ2∗,

(12)
where γ ≈ 0.5772 is the Euler’s constant.
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I Since the sequence {εt} follows standard normal distribution,
the odd moments of yt are zero and its even moments are
given by

E
(
y2rt
)

= (2r − 1) (2r − 3) ...3.1. erµ Γ (rσ + 1) , r = 1, 2, ..., .

I Then V (yt) = eµ Γ (σ + 1) and the kurtosis of yt becomes

Kr = 3
Γ (2σ + 1)

[Γ (σ + 1)]2
. (13)

I By choosing different values for σ, one can get a distribution
with larger kurtosis which makes rt suitable for modelling the
financial returns.
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Figure: The plot of kurtosis K of yt.
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I The structure of the model (8) implies that autocorrelation
function (ACF) of {yt} is zero and that of {y2t } is significant.

I The variance and covariance function of the squared return
series are obtained as

V
(
y2t
)

= E
(
y4t
)
−
(
E
(
y2t
))2

= e2µ
(

3 Γ (2σ + 1) − [Γ (σ + 1)]2
)
.

γy2t (k) = e2µ

{
Γ (σ + 1) Γ

[(
αk + 1

)
σ + 1

]
Γ (αkσ + 1)

− [Γ (σ + 1)]2
}
.
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I Hence the lag k autocorrelation of the squared sequence {y2t }
is

ρy2t (k) = Corr
(
y2t , y

2
t−k
)

=
Γ (σ + 1) Γ

[(
αk + 1

)
σ + 1

]
− [Γ (σ + 1)]2 Γ

(
αkσ + 1

)
Γ (αkσ + 1)

{
3 Γ (2σ + 1) − [Γ (σ + 1)]2

}
(14)

I The ACF is an exponentially decreasing function of the lags for
different values of the parameters, as can be seen in figure 2.



Statistical Modelling of Volatility in Financial Time Series

Figure: The ACF of squared return for different combinations of the
parameters
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I Let (y1, y2, ..., yT ) be a realization of length T from the

GEV-SV model (8) and θ = (µ , σ, α)
′

be the parameter
vector to be estimated.

I We use the moments

E
(
y2t
)

= eµΓ (σ + 1) ,

E
(
y4t
)

= 3e2µΓ (2σ + 1)

E
(
y2t y

2
t−1
)

= e2µ
Γ (σ + 1) Γ [(α+ 1)σ + 1]

Γ (ασ + 1)

to estimate the parameters.
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I The resulting moment equations for µ, σ and α are expressed
as

µ̂ = Log

(
Ȳ2

Γ(σ̂ + 1)

)
;
Ȳ 2
2

Ȳ4
=

Γ(σ̂ + 1)2

3 Γ(2σ̂ + 1)
;

Ȳ22
e2µ Γ(σ + 1)

=
Γ[(α+ 1)σ + 1]

Γ(ασ + 1)
, (15)

where Ȳ2 = (1/T )
∑T

t=1 y
2
t , Ȳ22 = (1/T )

∑T
t=1 y

2
t y

2
t−1 and

Ȳ4 = (1/T )
∑T

t=1 y
4
t .

I As noted earlier, now using the results of Hansen (1982), we
can show that the moment estimators are consistent and
asymptotically normal (CAN).
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I Now we have the following result, proved by Hansen(1982)
Result: Suppose that the sequence {rt : −∞ < t <∞} satis-
fies the assumptions stated by Hansen(1982). Then{√

T
(
θ̂ − θ

)
, T ≥ 1

}
converges in distribution to a normal

random vector with mean 0 and dispersion matrix
[
DS−1D

′
]−1

,

where D = E
[
∂
∂θf (rt , θ0)

]
and S =

∑∞
k=−∞ Γ

(k)
, Γ(k) =

E
(
ft f

′
t−k

)
.
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I Since the sequence {ht} defined by (9) is stationary and
ergodic, it follows that the sequence {yt} given in (8) also
possesses these properties.

I Further all the moments of yt and ht are finite.

I Hence the asymptotic dispersion matrix becomes 1
T Σ , where

Σ =
[
DS−1D

′
]−1

. (16)
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Simulation Study

I We carry out a simulation study to understand the
performance of the estimators with sample sizes 1000 and
2000.

I First, we generate a sample of size T from the GEV Markov
sequence specified in (9) using the innovation random variable
described in (11).

I Then simulate the sequence {yt} using GEV AR(1) model.
We use this simulated sample to obtain the estimators of the
parameters.
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I For each specified value of the parameter, we repeat the
experiment 1000 times for computing the estimates and then
averaged them over the repetitions.

I From the Table, we observe that when the sample size is
large, the estimates perform reasonably well and there is a
significant reduction in asymptotic standard deviations and
root mean square errors.

I Hence we claim that the method of moment estimation yields
good estimates for the parameters involved.
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True Values µ̂ σ̂ α̂

µ σ α Mean Std dev Mean Std dev Mean Std dev

0.5 1.5

0.9 0.5334 0.2627 1.4061 0.2471 0.9158 0.2764
0.8 0.5342 0.1943 1.4085 0.2220 0.8207 0.2677
0.7 0.5287 0.1789 1.4175 0.2255 0.7173 0.2534
0.5 0.5137 0.1719 1.4424 0.2340 0.4935 0.2259
0.2 0.5237 0.1563 1.4321 0.2246 0.1995 0.1768

0.7 1

0.9 0.7016 0.1699 0.9611 0.1710 0.9480 0.3436
0.8 0.7022 0.1227 0.9628 0.1598 0.8339 0.3174
0.7 0.7027 0.1083 0.9629 0.1488 0.7301 0.2956
0.5 0.6950 0.0974 0.9739 0.1613 0.5157 0.2606
0.2 0.6984 0.0834 0.9757 0.1545 0.2063 0.1962
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Data Analysis

I To illustrate the application of the proposed model, we
analysed the following three sets of data for the period:
01.01.2010 - 13. 06. 2017.

I (1) the closing index data of Bombay Stock Exchange (BSE) ,
(2) daily high and (3) daily low index data of Standard and
Poor’s 500 (S&P 500).

I The time series plots of these data are given in the following
figure. The left panels show the plots of actual data series
and the log-return series are on the right panels.
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BSE Closing Index
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Figure: Time series plot of the stock prices and the return
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I Denoting the daily price index by pt, the returns are
transformed into continuously compounded rates centered
around their sample mean:

yt = ln

(
pt
pt−1

)
−
(

1

T

) T∑
t=1

ln

(
pt
pt−1

)
.

I The summary statistics of the return series are reported in
table, where Q(20) and Q2(20) are the Ljung-Box statistic for
return and squared return series with lag 20.

I The test suggests that the return series is serially uncorrelated
whereas the squared return series has significant serial
correlation.

I The kurtosis of the returns for all the series is greater than
three which implies that the distribution of the returns is
leptokurtic in nature.
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Statistics BSE Closing Index S&P High Index S&P Low Index
Sample Size 1827 1872 1872
Mean 0 0 0
Standard Deviation 1.010435 0.7204921 0.8855629
Minimum -6.938474 -3.563278 -8.35233
First Quartile -0.644441 -0.317065 -0.40053
Median 0.011182 -0.001545 0.06957
Third Quartile 0.680049 0.361892 0.45031
Maximum 4.061033 3.612929 4.27316
Kurtosis 4.525028 6.17833 10.60638

Table: Summary Statistics of Log Return Series
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Figure: ACF of the returns(top panels) and the squared returns(bottom
panels)
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Parameters BSE Closing Index S&P High Index S&P Low Index
µ̂ 0.115052 -0.6688589 -0.5561562
σ̂ 0.7034 1.02925 1.537918
α̂ 0.2101337 0.7393923 0.6374557

Table: Parameter Estimates using Method of Moments



Statistical Modelling of Volatility in Financial Time Series

I Once the estimates of parameters are obtained, the next stage
is the model diagnostic checking.

I That is, we need to check whether the assumptions on the
model (8) are satisfied with respect to the data we have
analysed.

I The model (8) is in terms of the volatilities ht, which are
unobservable. This aspect makes the diagnosis problem
difficult.

I One of the methods suggested in such cases is to employ
Kalman filtering by rewriting the model (8) in the state-space
form.

I For more details on Kalman filter method and associated
theory, one can refer Jacquier et al (1994) and Tsay (2005).
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I Since the Kalman Filter method is developed under the
normality assumptions, we approximate the distribution of ηt
specified in (9) by a normal distribution and then adopt
Kalman filter method for estimating the volatilities.

I Using these estimated volatilities, we can compute the
residuals using the equation (8).

I The state space representation of the SV model given in (8)
can be written as

log y2t = −1.27 + ht + νt , E(νt) = 0, V (νt) =
π2

2
(17)

and
ht = αht−1 + ηt

where ηt is assumed to be normally distributed with mean
µ∗ = (1− α)(µ− σ γ) and variance σ2∗ = (1− α2) (π2σ2)/6
which are given in (12).
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I If the distribution of νt is approximated by a normal
distribution then the preceding system (17) becomes a
standard dynamic linear model, to which the Kalman filter can
be applied.

I Let us define that h̄t |t−1 be the prediction of ht based on the
information available at time t− 1 and Ωt | t−1 be the variance
of the predictor.

I Here we are making a presumption that the update that uses
the information at time t as h̄t |t and the variance of the
update as Ωt | t.
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I The equations that recursively compute the predictions and
updating are given by

h̄t | t−1 = α h̄t−1 | t−1 + (1− α) (µ− σ γ)

Ωt | t−1 = α2 Ωt−1 |t−1 + (1− α2)
π2σ2

6

and

h̄t | t = h̄t | t−1 +
Ωt | t−1

ft

[
log r2t + 1.27− h̄t | t−1

]
Ωt | t = Ωt | t−1(1−

Ωt | t−1

ft
)

where ft = Ωt | t−1 + π2

2 .
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I Then the residuals are calculated by the equation

ε̂t = yt exp

(
− h̄t

2

)
(18)

and use this sequence for the residual analysis.

I The system is initialized at the unconditional values,
Ω0 = π2σ2

6 and h0 = µ− σ γ.

I The residual analysis is carried out using this prediction error.

I The parameters µ, σ and α in the above system are replaced
by their respective estimates.
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I Further, we also checked the significance of ACF in the
residuals by computing the Ljung-Box statistic for the series
{ε̂t} and {ε̂2t }, which are summarized in the table below.

I All these values are less than the 5% chi-square critical value
(10.117) at degrees of freedom 20.

I Hence we conclude that there is no significant serial
dependence among the residuals and the squared residuals.
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Statistic BSE Closing Index S&P High Index S&P Low Index
Residuals 0.004958879 0.2233965 1.515389
Squared Residuals 1.658886 0.1583074 0.9549111

Table: Ljung Box Statistic for the Residuals and Squared Residuals
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Figure: Histogram of residuals with superimposed standard normal density
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Remark:

I The Weibull - GEV model is more suitable for volatility related
to extremes, such as daily maxima, minima, etc.

I Another distribution on the positive support useful for
modeling volatility is Birnbaun-Sauners.

I We briefly discuss the model and illustrate with an example.
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Birnbaum-Saunders SV Model

Let yt be the return at time t. Define the SV model

yt =
√
htεt,

ht = β

1

2
αXt +

√(
1

2
αXt

)2

+ 1

2

,

Xt = ρXt−1 + ηt ; |ρ| < 1, t = 1, 2, ..., (19)

with {Xt} be a stationary Gaussian AR(1) sequence with standard
normal marginal distribution. Where {εt} is a sequence of indepen-
dent and identically distributed standard normal random variables.
We assume that the sequence {εt} is independent of ht and ηt for
every t.
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This is a stochastic volatility model for the return series {rt} whose
volatilities are generated by a stationary Markov sequence of BS
random variables with marginal probability density function

f (ht;α, β) =
1

2αβ
√

2π

[(
β

ht

)1/2

+

(
β

ht

)3/2
]

exp

(
− 1

2α2

[
ht
β

+
β

ht
− 2

])
,

where ht > 0 , α, β > 0.
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Figure: The plot of kurtosis of return and the ACF of squared return
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Estimation: Method of moments

Let (y1, y2, . . . , yT ) be a realization of length T from the SV model
(19), Θ = (α, β, ρ) be the parameter vector to be estimated. We
use the moments

E(y2t ) = β

(
1 +

α2

2

)
, E(y4t ) = 3β2

(
1 + 2α2 +

3

2
α4

)
,

E(y2t y
2
t−1) = β2

(
1 + α2 +

α4

4
(1 + 2ρ2) + α2I1

)
to estimate the parameters.
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The resulting moment equations for α, β and ρ are expressed as

Ȳ 2
2

Ȳ4
=

(
1 + α̂2

2

)2
3
(
1 + 2α̂2 + 3

2 α̂
4
) ; β̂ =

Ȳ2(
1 + α̂2

2

)
and

Ȳ22 = β̂

(
1 + α̂2 +

α̂4

4
(1 + 2ρ̂2) + α̂2Î1

)
,

where

Ȳ2 = (1/T )

T∑
t=1

y2t , Ȳ22 = (1/T )

T∑
t=1

y2t y
2
t−1, Ȳ4 = (1/T )

T∑
t=1

y4t .

To be solved numerically.
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Estimation: EIC method

I The method of moments estimates are easy to compute, but
not very efficient.

I We tried a likelihood based computation method known as
Eficient Important Sampling (EIS) proposed by Richard and
Zang (2007).

I The procedure is based on a suitable decomposition of the
likelihood function and then following an algorithm based on
MCMC method.

I The diagnosis method is same as before using state-space
representation.

I We applied this method for data on USD/INR exchange rate
and S&P500 opening index.
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Data Analysis

We apply the BS-SV model to analyse the daily returns for
(1) the rate of exchange on the Rupee/Dollar from July 25, 1998 to
May 22, 2015 obtained from Data base on Indian Economy, Reserve
Bank of India and
(2) the opening index of Standard and Poors 500 (S&P 500) from
January 02, 2008 to May 22, 2015 obtained from Yahoo Finance.
The plots of time series and the corresponding centered return series
are given in the next Figure
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Figure: The plot of return and the ACF of squared return
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Statistic Dollar Ex-
change rate

S&P500 Open-
ing Index

Sample size 4051 1861
Minimum -3.0164 -9.1349
Maximum 4.0100 10.1193
Std. Dev. 0.4225 1.3496
Kurtosis 11.3384 12.7281
Q(20) 1.7088 1.4721
Q2(20) 87.1655 68.1816

Table: Descriptive statistics of the return series
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Figure: ACF of the returns and the squared returns
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Computed the residuals using State space representation.

Figure: ACF of the residuals
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Parameters Dollar Exchange
rate

S&P 500 Open-
ing Index

α 2.9411 2.5030
β 0.1721 0.4404
ρ 0.9101 0.7942
Q∗(20) 0.6820 0.3428
Q2∗(20) 5.0400 1.1539

Table: Estimates of parameters and Ljung-Box statistic for residuals
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Figure: Histogram of residuals with superimposed standard normal density
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